## Exercise 7.7.5

Find the general solutions to the following inhomogeneous ODEs:

$$
x y^{\prime \prime}-(1+x) y^{\prime}+y=x^{2} .
$$

## Solution

This is a linear ODE, so its general solution can be written as a sum of the complementary solution and the particular solution.

$$
y(x)=y_{c}(x)+y_{p}(x)
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
x y_{c}^{\prime \prime}-(1+x) y_{c}^{\prime}+y_{c}=0 \tag{1}
\end{equation*}
$$

This ODE neither has constant coefficients nor is equidimensional, so it would seem a series solution is needed. Notice, though, that the coefficients add to zero. That means $y_{c}=e^{x}$ is a solution. Use the method of reduction of order to obtain the general solution: Plug in $y_{c}=C(x) e^{x}$ into equation (1) and solve the resulting ODE for $C(x)$.

$$
\begin{gathered}
x\left[C(x) e^{x}\right]^{\prime \prime}-(1+x)\left[C(x) e^{x}\right]^{\prime}+\left[C(x) e^{x}\right]=0 \\
x\left[C^{\prime}(x) e^{x}+C(x) e^{x}\right]^{\prime}-(1+x)\left[C^{\prime}(x) e^{x}+C(x) e^{x}\right]+\left[C(x) e^{x}\right]=0 \\
x\left[C^{\prime \prime}(x) e^{x}+2 C^{\prime}(x) e^{x}+C(x) e^{x}\right]-(1+x)\left[C^{\prime}(x) e^{x}+C(x) e^{x}\right]+\left[C(x) e^{x}\right]=0
\end{gathered}
$$

Simplify the left side.

$$
x C^{\prime \prime}(x) e^{x}+x C^{\prime}(x) e^{x}-C^{\prime}(x) e^{x}=0
$$

Divide both sides by $e^{x}$ and factor $C^{\prime}(x)$.

$$
x C^{\prime \prime}(x)+(x-1) C^{\prime}(x)=0
$$

Solve for $C^{\prime \prime}(x) / C^{\prime}(x)$.

$$
\frac{C^{\prime \prime}(x)}{C^{\prime}(x)}=\frac{1-x}{x}
$$

The left side can be written as the derivative of a logarithm by the chain rule.

$$
\frac{d}{d x} \ln \left|C^{\prime}(x)\right|=\frac{1-x}{x}
$$

The absolute value sign is included just because the argument of logarithm can't be negative. Integrate both sides with respect to $x$.

$$
\begin{aligned}
\ln \left|C^{\prime}(x)\right| & =\int^{x} \frac{1-s}{s} d s+C_{1} \\
& =\ln x-x+C_{1}
\end{aligned}
$$

Exponentiate both sides.

$$
\begin{aligned}
\left|C^{\prime}(x)\right| & =e^{\ln x-x+C_{1}} \\
& =e^{\ln x} e^{-x} e^{C_{1}} \\
& =x e^{-x} e^{C_{1}}
\end{aligned}
$$

Remove the absolute value sign on the left by placing $\pm$ on the right.

$$
C^{\prime}(x)= \pm e^{C_{1}} x e^{-x}
$$

Use a new constant $C_{2}$ for $\pm e^{C_{1}}$.

$$
C^{\prime}(x)=C_{2} x e^{-x}
$$

Integrate both sides with respect to $x$.

$$
C(x)=-C_{2}(x+1) e^{-x}+C_{3}
$$

Using a new constant $C_{4}$ for $-C_{2}$, we get

$$
C(x)=C_{4}(x+1) e^{-x}+C_{3},
$$

so the complementary solution is

$$
\begin{aligned}
y_{c}(x) & =C(x) e^{x} \\
& =C_{4}(x+1)+C_{3} e^{x} .
\end{aligned}
$$

On the other hand, the particular solution satisfies

$$
\begin{equation*}
x y_{p}^{\prime \prime}-(1+x) y_{p}^{\prime}+y_{p}=x^{2} . \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is a monomial of second power, the particular solution would be expected to be a linear combination of monomials up to and including the power of 2 : $y_{p}(x)=A+B x+D x^{2}$. However, because 1 and $x$ both satisfy the associated homogeneous equation, an extra factor of $x^{2}$ is needed. The trial solution is then $y_{p}(x)=x^{2}\left(A+B x+D x^{2}\right)$. Substitute this formula into equation (2) to determine $A, B$, and $D$.

$$
\begin{gathered}
x\left[x^{2}\left(A+B x+D x^{2}\right)\right]^{\prime \prime}-(1+x)\left[x^{2}\left(A+B x+D x^{2}\right)\right]^{\prime}+\left[x^{2}\left(A+B x+D x^{2}\right)\right]=x^{2} \\
x\left(2 A+6 B x+12 D x^{2}\right)-(1+x)\left(2 A x+3 B x^{2}+4 D x^{3}\right)+\left[x^{2}\left(A+B x+D x^{2}\right)\right]=x^{2} \\
(2 A-2 A) x+(6 B-3 B-2 A+A) x^{2}+(12 D-4 D-3 B+B) x^{3}+(-4 D+D) x^{4}=x^{2}
\end{gathered}
$$

Match the coefficients on both sides to obtain a system of equations for $A, B$, and $D$.

$$
\begin{aligned}
2 A-2 A & =0 \\
6 B-3 B-2 A+A & =1 \\
12 D-4 D-3 B+B & =0 \\
-4 D+D & =0
\end{aligned}
$$

Solving it yields $A=-1, B=0$, and $D=0$. Therefore, the particular solution is $y_{p}(x)=x^{2}(-1)=-x^{2}$, and the general solution to the original ODE is

$$
\begin{aligned}
y(x) & =y_{c}(x)+y_{p}(x) \\
& =C_{4}(x+1)+C_{3} e^{x}-x^{2} .
\end{aligned}
$$

